
1

Checkpointing at System Calls
using BDI Compression

Adam K. Hastings†, Hiroshi Sasaki†, Miguel A. Arroyo, Kent Williams-King, Vasileios P. Kemerlis,
and Simha Sethumadhavan

Abstract—For many years, checkpoint and recovery schemes have been proposed as a way for systems to take snapshots of their
state, and then later revert to them as needed. More recently, a renewed interest in the topic has led to highly-optimized,
hardware-assisted checkpoint and recovery systems. While these systems have tolerable overhead under normal operation, they
perform poorly during recovery. In this work, we present a new hardware-assisted checkpoint and recovery system which has minimal
overheads in both taking and restoring from checkpoints. Our approach leverages data compression to store checkpoint data inline
with program data which reduces the amount of data that needs to be logged between checkpoints. Compression also enables us to
aggressively checkpoint in caches as opposed to prior approaches which do so only in memory, freeing us from invalidating the content
of caches upon checkpoint and recovery. Our compression-based checkpointing system requires ∼50% less checkpoint data to be
stored in memory when evaluated with SPEC CPU2006 benchmarks.

Index Terms—Checkpointing, error recovery, fault tolerance

F

1 INTRODUCTION

IN computer systems, checkpoint and recovery (or check-
pointing) is the act of periodically recording a system’s

state, and then later recovering from the recorded state if
necessary. Such systems have been used extensively in fault
tolerant computing, where recorded states (or checkpoints)
act as a system backup in case of an unrecoverable er-
ror. Checkpointing with deterministic replay has also been
proposed for a number of different applications, ranging
from improved debuggers [11] to cache side-channel de-
tections [12] to malware defenses [8]. Despite the success
of current checkpoint and recovery systems, future applica-
tions are stymied by the non-trivial overheads of taking and
recovering from checkpoints.

In this work, we introduce a new checkpoint and re-
covery system which improves performance over the state
of the art. Our proposed system is based on the princi-
ple that data values exhibit spatial and temporal locality,
which can be exploited to reduce the volume of information
needed when taking checkpoints via data compression. In
particular, we find that subsequent data updates tend to be
similar enough to frequently enable base-delta-immediate
(BDI) compression [6], which we use to store two values
in the same address. Using this approach, we can store
both a checkpoint and subsequent updates to the checkpoint
inline with each other. By keeping both the checkpoint
and current system state in the same location, we avoid
additional memory accesses for both taking and recovering
from checkpoints. Using this approach, we accrue perfor-

†Joint first authors.

• A. K. Hastings, H. Sasaki, M. A. Arroyo, and S. Sethumadhavan are with
the Department of Computer Science, Columbia University in the City of
New York, New York, NY 10027.
E-mail: {hastings, sasaki, miguel, simha}@cs.columbia.edu

• K. Williams-King and V. P. Kemerlis are with the Department of Computer
Science, Brown University, Providence, RI 02912.
E-mail: {kwk, vpk}@cs.brown.edu

mance overheads (due to additional memory accesses) only
when a checkpoint value and subsequent update cannot be
compressed inline.

Using the SPEC CPU2006 benchmark suite [5], we eval-
uate our design and demonstrate that our system can expect
to recover from a checkpoint at least 2x faster than the
state of the art for single cores, without compromising the
error-free (non-recovery) performance. Our approach adds
only minimal hardware: BDI (de)compression hardware,
and three bits of metadata per cache line size data chunks.

2 MOTIVATION

As shown in TABLE 1, recovery time is key to the utility
of various types of checkpointing. Some techniques, such as
speculative execution and hardware transactional memory,
require very low overheads for taking state, since recording
tend to happen at very fine granularities. However, as
the required granularity becomes larger, checkpoints are
taken less frequently, and recovery latency becomes less
important. This is seen in existing coarse-grained check-
pointing systems, where checkpoints are taken millions of
cycles apart (if not more), permitting recovery times to be
large. In previous systems, this long recovery time has been
tolerable, since most checkpoint and recovery systems have
been motivated primarily by the need for fault tolerant and
resilient computing, where recoveries are assumed to be
triggered by rare hardware faults. Consequently, existing
systems do not scale well at finer granularities or as the
rate of recoveries increases, and are therefore limited in
the types of applications they can support. In contrast,
our system aims to enable checkpointing applications that
require finer granularities or faster recoveries than existing
course-grained systems allow.

Faster recovery times are an important factor in de-
termining which types of checkpointing applications are



2

TABLE 1
Comparison of different checkpoint and replay schemes.

Purpose Mechanism Granularity Checkpoint Latency Recovery Latency

Speculative Execution On-chip buffers ∼50 stores Negligible ∼10s of cycles

Hardware Transactional Memory On-chip buffers (few Kbs) ∼100s of stores Negligible
∝ Aborted transaction length
(typically < 1M cycles)

Thread-Level Speculation [10] Caches ∼1,000s of stores
∝ # of successful speculations ∝ # of failed speculations
× Bus request latency × Bus request latency

Kilo-Window Processors [4] Multi-level instruction queues ∼1,000s of insts ∝ # of physical registers ∝ Branch misprediction rate

Compression-Based
Checkpointing (This Work)

Main memory System calls (Delayed) L1 writeback ∝ (1 - compression ratio) × Log size

Reliability (SafetyNet) [9]
On-chip buffers (100+ KB)

Millions of insts Negligible ∝ Log size
+ Main memory

Reliability
Main memory Millions+ of insts

Delayed cache writeback ∝ Log size
(ReVive/Rebound) [2], [7] (done in background) + Cache invalidation overhead

10 7 10 4 10 1 102 105 108

Recoveries per second

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e 
sp

en
t r

ec
ov

er
in

g Recovery time (s)
1.0e+03
1.0e+00
1.0e-03
1.0e-06
1.0e-09

Fig. 1. In order to achieve tolerable overheads, the recovery time must
shrink as the rate of recoveries increases.

possible (see Figure 1). If the recovery time is large, the
overhead is tolerable only when recoveries are rare events.
But as the rate of recoveries increases, systems with long
recovery times perform worse, and eventually spend more
time recovering state than actually computing meaning-
ful work. This means that existing checkpointing systems
preclude other, non-fault-tolerance-oriented applications of
checkpointing, such as thread level speculation [10] and
kilo-window processors [4], which may require many re-
coveries per second. In this case, a much faster recovery
time (e.g., 10−3 to 10−6 seconds) is needed to ensure that
the processor is not inundated with recovery operations.
In cases where recoveries are extremely frequent (perhaps
every hundreds or even tens of cycles), it is necessary
to have a correspondingly fast recovery time (e.g., 10−9

seconds); such might be the case where a system is under
an active attack, which may trigger a defense mechanism
to repeatedly recover the system to a pre-attack state. In
all cases, it is clear that as the rate of recovery increases,
checkpointing applications are limited by how long it takes
them to recover. By reducing checkpointing overheads, our
design opens the door to new applications of course-grained
checkpointing.

3 DESIGN

Our checkpointing system follows the same basic principles
as many others: periods of execution, known as epochs, begin
when a checkpoint is taken. In a naı̈ve checkpointing sys-
tem, this may mean taking a snapshot of the entire system’s
state and storing it somewhere safe (e.g., DRAM) in case
of a recovery. More sophisticated systems like SafetyNet [9],
ReVive [7], Rebound [2], and our own design instead declare

the system state at a checkpoint event to be the checkpoint
data, and then only record (or “log”) the data elsewhere
upon the first change of the data block (typically at the
cache line granularity) — this ensures that the checkpoint-
ing system doesn’t needlessly store (and restore) data that
doesn’t change during the epoch. After some time, the
epoch ends, a new checkpoint is taken, and a new epoch
begins (we checkpoint whenever a userland program makes
a system call). If at any point during the epoch some rollback
triggering event is detected, the system can revert back to
the checkpoint and resume execution.

3.1 Inline Data Compression

In our review of existing course-grained checkpointing sys-
tems, we found that restoring from checkpoints typically
involves transferring large amounts of data from off-chip
DRAM memory back into a processor’s memory system,
and also involves invalidating the processors caches [2], [7].
However, this large transfer of data and cache invalidations
are what makes existing solutions perform poorly when
recoveries are frequent. Our proposed checkpointing system
obviates both of these issues by utilizing data compression.

In our scheme, we propose storing checkpoint data inline
with regular program data by means of compressing both
values together. This improves previous solutions for two
reasons: first, by implementing our scheme in a processor’s
L2/L3 caches and memory, successful compression allows
us to restore from on-chip checkpoint data thus avoiding
additional accesses to slow off-chip DRAM; second, ag-
gressively checkpointing in caches means that we include
caches’ state in the checkpoint (as opposed to those which
writeback the dirty content in caches and checkpoint only
memory state [2], [7]) thus avoiding cache invalidations
upon recovery.

3.2 System Modifications

In our design, the system needs the following modifications:
• Additional hardware to allow for compression and decom-
pression. BDI compression is a natural fit for this problem,
as it can be achieved with relatively little hardware with
minimal latency while offering reasonable compressibil-
ity [6], [13].



3

Clean and 
Compressed

Dirty and 
Compressed

Invalid and 
Compressed

Ch
U && C

Clean and 
Uncompressed

Dirty and 
Uncompressed

Invalid and 
Uncompressed

U && !C

U && C

U && !C U && !C

R
U && C

U && !C
Ch

U
R

Transition Abbreviation

Checkpoint Ch

Recovery R

Update U

Update (compressible) U && C

Update (uncompressible) U && !C

U && C

R

R

Ch
or R

Ch
or R

Ch

Ch

U

Fig. 2. A state diagram describing a cache line’s transition between states, given various system events.

• On-demand and address reserved, virtual memory to log
the memory state. These pages are needed in case check-
point and update data cannot be sufficiently compressed to
fit inline. In this case, our design executes microcode instruc-
tions which are responsible for logging the checkpoint data
in these on-demand pages. Register state is saved in shadow
registers as proposed in previous studies [2], [7], [9].
• Three additional bits of metadata per cache line granular
data blocks. L2 and L3 caches where we take checkpoints
require three bits of additional storage for the metadata, and
for DRAM we store them in spare ECC bits similar with
SPARC ADI to avoid modifications to the DIMM architec-
ture [1]. These bits encode the six possible states of the cache
line: whether the line is compressed or uncompressed, and
whether it is clean, dirty or invalid.

3.3 Checkpoint and Recovery State Machine
Figure 2 presents the transition between states. The state
of a cache line determines how the line must be read in
order to return the correct value. If an uncompressed line
is valid (clean or dirty), a read returns the line itself. If it is
invalid, then the cache line contains strictly invalid data, and
the read operation must find and return the correct value
from the log instead (with the help of microcode execution).
If a compressed line is valid, a read from the line must
decompress the line and serve the more recent of the two
lines. If a cache line is compressed and invalid, then the
more recent value is invalid, and the read returns the older
of the two decompressed values.

Our design also stipulates that following actions must
be taken for the cache line updates. If an uncompressible
update to a clean block occurs, the line is replaced entirely
and the checkpoint data must be written to the log (with the
help of microcode execution). If the cache line is in the clean
and compressed state when a compressible update occurs,
then the update overwrites the older of the two compressed
values; otherwise if the line is dirty and compressed, the
update overwrites the newer of the two.

When a checkpoint is taken, the system’s current state
becomes the new checkpoint. The log, which contains check-
point data from a previous epoch, becomes obsolete and
is cleared. Also the cache lines transfer to a clean state.
Finally for recovery, unlike other checkpoint and recover

systems, our scheme requires that no explicit actions be
taken if the data is compressed except transferring the dirty
states to invalid; if not, the data is restored as with previous
solutions.

4 METHODOLOGY

Checkpoint and recovery systems introduce two kinds of
overhead: (1) the overhead of normal execution, where
checkpoints are taken but not recovered, and (2) the over-
head of recovering to checkpoints. In the case of normal
execution, our design behaves like existing solutions, with
the exception being the compression and decompression
hardware (which can be small and have marginal over-
heads [6]). Therefore, we expect that our design behaves
similarly to existing solutions with regards to the first source
of overhead, and we instead focus on demonstrating our
design’s advantage with regards to the second.

There are two main sources of overhead during a re-
covery in existing checkpoint and recovery systems. The
first source of overhead is the latency of restoring the
clean (checkpointed) data into the memory hierarchy. This
latency is proportional to the amount of data that must be
transferred back. The second source of recovery overhead
comes from invalidating the caches (if necessary). In contrast
to ReVive [7] and Rebound [2] which need to invalidate
all the level of caches, our design only requires the L1
cache to be invalidated (since we take checkpoints in L2
and L3 caches). In this paper, we focus on the former
and evaluate the amount of data our design must restore
from DRAM (i.e., dirty and uncompressed) compared to a
baseline scheme which must restore all the dirty data. While
we don’t quantify how much of an effect the latter cache
invalidation has on performance, it is obvious that, all other
things held equal, a system with fewer cache invalidations
will perform better than a system with more frequent cache
invalidations.

We use the Sniper simulator [3] to measure the aver-
age amount of compressed/uncompressed dirty data of 18
C/C++ workloads (we omit h264ref since the execution
does not finish in a reasonable amount of time) from the
SPEC CPU2006 benchmark suite [5]. We use the test inputs
and run to completion. TABLE 2 shows the parameters of
the evaluated processor.



4

0%

25%

50%

75%

100%

astar bzip2 dealII gcc gobmk hmmer lbm libquantum mcf milc namd omnetpp perlbench povray sjeng soplex sphinx3 xalancbmk AMean

L2 L3 Mem

Fig. 3. Average compression ratios of dirty data at the L2 cache, L3 cache and main memory for the SPEC CPU2006 benchmark suite.

TABLE 2
Hardware configuration of the simulated system.

Core x86-64 Intel Nehalem-like OoO core at 2.66GHz
L1 data cache 32KB, 8-way, 4-cycle latency

L2 cache 256KB, 16-way, 8-cycle latency
L3 cache 2MB, 16-way, 30-cycle latency

DRAM
DDR3-1066 like
45ns access latency, 7.6GB/s per memory controller

5 RESULTS

Figure 3 displays the average compression ratios (sampled
every 1M instructions) of dirty data residing in L2 cache, L3
cache and main memory. On average we can see that 50.5%
of dirty data can be kept compressed thus avoiding half the
extra memory accesses upon recovery. Using these values as
a proxy for the latency of restoring data, we can conclude
that our design has less overhead than existing checkpoint
and recovery system. If we consider that our system also
avoids the L2 and L3 cache invalidation penalties, we can
conclude that our design in general recovers faster than
existing designs, while retaining the performance of non-
recovery operation without requiring expensive hardware.

Another interesting fact is that SPEC CPU consists of
compute intensive applications with infrequent system calls:
executed every 50K (perlbench) to 3G (bzip2) instruc-
tions. In general when taking checkpoints more frequently
we can expect higher compression ratio because the data
will be “cleaned” more often and thus our technique to
be more effective. Evaluating such system call intensive
applications (e.g., server workloads) is left for future work.

6 RELATED WORK

Previous work has explored architectural support for check-
pointing. SafetyNet proposes logging at main memory and
in the caches [9], while ReVive proposes logging in main
memory only [7]. Rebound improves on Revive by intro-
ducing a protocol for coordinated local checkpoints in mul-
tiprocessor systems [2], rather than the less-efficient global
checkpoints used in Revive and SafetyNet. Such checkpoint
systems are constrained in their recovery times by the size of
the log (see TABLE 1). Our design is the only system which,
to the best of our knowledge, aims to reduce this log size by
employing inline data compression.

7 CONCLUSION

Better checkpointing systems with rapid recovery are
needed to enable new checkpointing applications. In this

paper, we presented a new checkpoint and recovery al-
gorithm that improves the state of the art by leveraging
program locality with inline data compression. Our check-
pointing system outperforms existing solutions by keeping
checkpoint data compressed inline with program memory,
which keeps checkpoint data nearby in case of a recovery.
By keeping checkpoint data nearby, our compression-based
checkpointing system allows for implicit, and therefore
much faster, recovery. Experimental results reveal that our
approach reduces about half the memory accesses required
for both checkpoint and recovery of SPEC CPU2006 bench-
marks.

REFERENCES

[1] “Hardware-assisted checking using Silicon Secured Memory
(SSM),” https://docs.oracle.com/cd/E37069 01/html/E37085/
gphwb.html, 2015.

[2] R. Agarwal, P. Garg, and J. Torrellas, “Rebound: scalable check-
pointing for coherent shared memory,” in Proc. of ISCA, 2011, pp.
153–164.

[3] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout,
“An evaluation of high-level mechanistic core models,” ACM
Transactions on Architecture and Code Optimization (TACO), 2014.

[4] A. Cristal, O. J. Santana, M. Valero, and J. F. Martı́nez, “Toward
kilo-instruction processors,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 1, no. 4, pp. 389–417, 2004.

[5] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[6] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Base-delta-immediate compression:
practical data compression for on-chip caches,” in Proc. of PACT,
2012, pp. 377–388.

[7] M. Prvulovic, Z. Zhang, and J. Torrellas, “ReVive: cost-effective
architectural support for rollback recovery in shared-memory
multiprocessors,” in Proc. of ISCA, 2002, pp. 111–122.

[8] Y. Shalabi, M. Yan, N. Honarmand, R. B. Lee, and J. Torrellas,
“Record-replay architecture as a general security framework,” in
Proc. of HPCA, 2018, pp. 180–193.

[9] D. J. Sorin, M. M. Martin, M. D. Hill, and D. A. Wood, “SafetyNet:
improving the availability of shared memory multiprocessors with
global checkpoint/recovery,” in Proc. of ISCA, 2002, pp. 123–134.

[10] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry, “A scalable
approach to thread-level speculation,” in Proc. of ISCA, 2000, pp.
1–12.

[11] M. Xu, R. Bodik, and M. D. Hill, “A “flight data recorder” for
enabling full-system multiprocessor deterministic replay,” in Proc.
of ISCA, 2003, pp. 122–135.

[12] M. Yan, Y. Shalabi, and J. Torrellas, “ReplayConfusion: detecting
cache-based covert channel attacks using record and replay,” in
Proc. of MICRO, 2016, pp. 1–14.

[13] V. Young, S. Kariyappa, and M. Qureshi, “Enabling transparent
memory-compression for commodity memory systems,” in Proc.
of HPCA, 2019, pp. 570–581.

https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html

	Introduction
	Motivation
	Design
	Inline Data Compression
	System Modifications
	Checkpoint and Recovery State Machine

	Methodology
	Results
	Related Work
	Conclusion
	References

