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Abstract
In recent years there has been significant interest from

policymakers in addressing ransomware through policy and
regulations, yet this process remains far more of an art than
a science. This paper introduces a novel method for quanti-
tatively evaluating policy proposals: we create a simulated
game theoretic agent-based economic model of security and
use it as a testbed for several policy interventions, including
a hands-off approach, mandatory minimum investments, and
mandatory cyber insurance. Notably, we find that the bottle-
neck for better security outcomes lies not in better defender
decision-making but in improved coordination between de-
fenders: using our model, we find that a policy requiring
defenders to invest at least 2% of resources into security each
round produces better overall outcomes than leaving security
investment decisions to defenders even when the defenders
are “perfect play” utility maximizers. This provides evidence
that security is a weakest-link game and makes the case for
mandatory security minimums. Using our model, we also find
that cyber insurance does little to improve overall outcomes.
To make our tool accessible to others, we have made the code
open source and released it as an online web application.

1 Introduction

Around the world, governments have signaled interest in im-
proving security through policy, with proposals and regula-
tions taking shape in the U.S., U.K., E.U., and beyond [1–5].
Motivating these proposals is the recognition that security is
as much a problem of bad economics and misaligned incen-
tives as it is one of insecure technology [6–8]; hence recent ini-
tiatives like the White House’s National Cybersecurity Strat-
egy have explicitly called for the re-shaping of market forces
and the re-alignment of incentives to favor long-term invest-
ment [1]. However, while such high-level goals are promising,
it remains unclear which policies are best suited to achieve
these goals. Complicating matters is the “wicked problem”
nature of cybersecurity, where policy interventions are costly

and the efficacy of such interventions is difficult to predict
ex ante or measure ex post [9, 10].

This work enables a quantitative approach towards secu-
rity policymaking. In this paper, we develop an agent-based
economic model of a cybersecurity ecosystem, with three
classes of agents—defenders, attackers, and insurers—who
exhibit game theoretic “perfect play”, meaning they always
choose the strategy that maximizes expected utility. However,
our model is not strictly an analytic game theory model but
instead is a hybrid approach that also uses Monte Carlo sim-
ulation and draws from empirically-derived inputs. To put
this tool directly into the hands of others, we have released an
interactive version of our model as a web application where
users can adjust model inputs, run simulations, and produce
model outputs themselves [11].

We then use the model to study new security policies and
reaffirm existing ones. Using our model as if we were policy-
makers, we conduct several studies, summarized below:

Our first study explores voluntary security investments.
In this hands-off approach, there is no explicit mandate or
policy for security, and security spending is managed by the
defenders themselves. Each round, defenders are free to invest
any amount of their wealth into security, and are also free
to purchase insurance policies from an insurer. Even under
perfect play this model yields heavy losses for defenders
who lose their wealth to ransom payments and recovery costs
(later we discover that the poor result is not due to a flaw in
defenders’ strategies but due to a coordination problem). This
study serves as a baseline model for further studies in this
work.

Our second study is a sensitivity analysis. Our model pro-
vides the ability to observe how a change to an input (or in-
puts) influences the model output. This is especially relevant
for policymakers, who—through various regulatory carrots
and sticks—may have the ability to sway several of the real-
world analogs of our model’s inputs, and may use the model
to observe the effects of such interventions. We perform a
one-way sensitivity analysis on our model to observe which
inputs the model output is most sensitive to. From this we find



that policymakers should try to reduce the number of attacks
attempted and prevent the increase of recovery costs.

In our third study, we explore the effects of a policy where
defenders must invest some minimum amount towards secu-
rity. Surprisingly, we find that requiring defenders to invest
2% of resources into security at the beginning of each round
leaves defenders better off than the baseline case where de-
fenders make no mandatory investments but still make perfect
utility-maximizing decisions.

Our fourth study concerns cyber insurance. For many or-
ganizations, cyber insurance has become an essential tool for
managing risk. However, the role of insurance in reducing the
incidence or impact of attacks is contentious [12–14]. In this
study, we explore the effects of mandatory cyber insurance
and find that its effects on outcomes are negligible.

In light of the previous study, one policy suggestion might
be to lower premiums by means of a not-for-profit insurance
scheme, e.g. akin to the U.S. Federal Deposit Insurance Cor-
poration (FDIC) or the Federal Crop Insurance Corporation
(FCIC). Hence our fifth study is a actuarially fair insurance
scheme which makes insurance a more attractive option for
defenders but does not improve overall outcomes compared
to the baseline model. Finally, for our sixth study and for the
sake of completeness, we also trial a version of our model
where defenders’ wealth grows over time.

The key contributions of this paper are as follows:

• We advance the state of the art in security economic
modeling by combining the best features of game theory
models, iterative games, empirical research, and large-
scale Monte Carlo simulation to achieve a model of
greater richness and detail than prior works.

• Using our model, we generate new insights about cyber-
security: We find that mandatory investments produce
better outcomes than the uncoordinated every-defender-
for-themselves scenario, even when defenders choose
perfect play. From our model we also find that cyber
insurance did not improve outcomes for defenders given
the current state-of-affairs as captured via published ran-
somware data.

• We provide policymakers with a novel and interactive
tool for exploring security tradeoffs and the effects of
various policy interventions [11]. Notably, all the study
presented in this paper can easily be reproduced simply
by adjusting the input variables. In addition, we have
made our simulator code open source so that other re-
searchers may use and build upon our work [15, 16].

The paper is organized as follows: we situate our work
within the context of prior scholarship in Section 2. In Sec-
tion 3, we conduct empirical research to estimate real-world
values and distributions of values for model input variables.
Section 4 describes the model gameplay and agent strategies.
Section 5 presents our baseline model (i.e. with no policy

interventions). Section 6 presents a sensitivity analysis of
the model, while Sections 7–10 use the model to explore the
effects of mandatory security investments, mandatory cyber
insurance, actuarially fair (i.e. profitless) insurance, and model
behavior under compound growth, respectively. Section 11 de-
scribes the limitations of our work. This paper then concludes
in Section 12.

2 Related Work

Our work is an economic model of security that builds upon
several prior works in this area. However, we employ a novel
technique by creating a hybridization of three categories of
prior works: analytical models, empirical models, and sim-
ulation. To our knowledge, our work is the only economic
security model to take such an approach.

To explain this difference, consider prior analytical mod-
els [17–27]. These works generally describe some aspect of
security as a set of abstracted mathematical equations; then,
using optimization methods or other analytic techniques, these
works find critical points in the system (in game theoretic
models, often in the form of Nash or Stackelberg equilibria).
These works provide clean solutions but are often simplified
down to only a handful of variables to enable optimization
methods and often rely on parameters that are unknown in
the real-world. Like the other analytic works, our work uses
game theoretic decision-making but only to determine opti-
mal agent strategies and not system equilibria. This allows us
greater flexibility than what is possible with strictly analytic
models.

We also draw inspiration from prior empirical works in
security economics, which use (or collect) real-world datasets
to model some element of security [28–31]. Likewise, in
our own work, we collect real-world datasets of interest and
then perform regressions and fit distributions to them; this
is strictly different from the analytic works above. However,
unlike other empirical works, our end goal is not to provide a
description of the world but to use this description to create a
more realistic data-driven model.

Our work also shares similarities with simulation-based
economic models, which can allow for richer modeling than
the strictly analytic models [32–34]. However, to our knowl-
edge, our work is the only simulation-based model to investi-
gate security investment decision-making which previously
had only been attempted analytically [17, 19, 21, 22]. Further-
more, to our knowledge, prior simulation-based works try to
discover optimal decision-making whereas our agents are con-
structed with optimal decision-making, owing to the analytic
portions of our hybridized approach.



3 Model Setup

Our model contains three classes of players: defenders, at-
tackers, and insurers. The defenders D = {d1,d2, . . .d|D|[0]}
are the set of players who have assets they are trying to de-
fend. The attackers are a set of agents A = {a1,a2, . . .a|A|[0]}
that try to extract wealth from the defenders by means of ran-
somware. The insurers are the set of agents I = {i1, i2, . . . iNI}
who sell insurance policies to defenders. In this section, we
use publicly-available data sources to determine appropriate
values and value distributions for various model inputs.

3.1 Number of Agents
The first model input is the number of agents. An industry
report finds that in the real world there are roughly 50 known
active ransomware groups at any given time [35]. Hence we
initialize our model with 50 attackers, i.e. |A|= 50. In our
notation, we also use brackets [ ] to denote timestep, and so at
model initialization (i.e. timestep t = 0) we write |A|[0]= 50.

From the same report we find that the 50 ransomware
groups successfully attack roughly 5000 victims per year [35],
or about 100 attacks per group, which we denote with K = 100.
We can use K to determine the initial number of defend-
ers |D|[0]: First, if there are |A|[0]= 50 attackers and K = 100
attacks per attacker per year, and |D|[0] defenders, then the
probability that a given defender di is paired with attacker ai
during timestep t = 0 is K/|D|[0]; assuming independence be-
tween attackers, the probability of a defender being attacked
by any attacker is

P [attack][0] = 1−
(

1− K
|D|[0]

)|A|[0]
(1)

A choice of |D|[0]= 5000 yields P [attack][0]= 0.636, which
is reasonably close to the percentage of organizations that
have been hit with ransomware in the recent years [36].

To determine the initial number of insurers, we find that
among the Fortune 500 companies, roughly 1 out of 25 are
insurers who offer property and casualty insurance (including
cyberinsurance). Creating one insurer for every 25 defenders
gives |I|[0]= |D|[0]/25 = 200. Further validating this choice is
that |I|[0]= 200 is within the same order of magnitude as the
number of individual insurance companies offering cyberin-
surance as reported to the National Association of Insurance
Commissioners in 2022 [37].

3.2 Wealth Distribution
Each agent is initialized with some amount of wealth. To
determine appropriate choices for agents’ wealth, we first
analyzed the revenue and earnings of the top global 1000
companies as ranked by market capitalization [38]. We find
that revenue is lognormally distributed, and we fit a lognormal

distribution to the data with µW = 1.135 and σW = 1.118
(in terms of billions). A Kolmogorov-Smirnov test on the
distribution yields D = 0.0314 and p = 0.303, indicating a
good fit. We use this distribution to initialize our three classes
of agents.

Defenders—at timestep t = 0, each defender di is initialized
with wealth d [0]

i,w where

d [0]
i,w = w, w∼ Lognormal(µw,σ

2
w) (2)

Attackers—we rely on two assumptions to initialize at-
tacker wealth: 1) attackers’ wealth follows a similar lognor-
mal distribution as defenders, and 2) attackers are on average
less wealthy than the defenders they attack. To account for
this we introduce an scaling factor sI to represent the rela-
tive inequality between attackers and defenders. We estimate
this parameter to be sI = 0.001 based on available real-world
data: we find that the largest ransomware organizations earn
roughly $100M a year in revenues [39–41]; in comparison,
companies similar to those in our defender set have revenues
on the order of $100B a year [38]. Thus we find it reasonable
to conclude that there is a 1:1000 ratio in size between attack-
ers and defenders and set sI = 0.001, and initialize attackers’
wealth as follows:

a [0]
i,w = sI ·w, w∼ Lognormal(µw,σ

2
w) (3)

Insurers—we initialize each insurer ii’s wealth i[0]i,w by draw-
ing from the same distribution as the defenders:

i[0]i,w = w, w∼ Lognormal(µw,σ
2
w) (4)

3.3 Ransom Prices
The loss L of a ransomware attack is the sum of two compo-
nents: the cost of the ransom itself and the cost of recovery
from the attack (excluding the ransom). Prior work shows
that both of these costs are largely a function of organization
size [36], which we model using a defender di’s wealth d [t]

i,w :

L
(

d [t]
i,w

)
=Crans

(
d [t]

i,w

)
+Crec

(
d [t]

i,w

)
(5)

where Crans
(

d [t]
i,w

)
is the cost of the ransom payment itself

and Crec
(

d [t]
i,w

)
is the recovery cost.

From available data we find that ransom sizes scale linearly
with organization size [36], which we model with a linear
regression:

Crans
(

d [t]
i,w

)
= β0,rans +β1,rans ·d

[t]
i,w (6)

with β0,rans = 0.00121 and β1,rans = 792145 which achieves
R2 = 0.921, indicating a good fit.
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Figure 1: From an industry report we find that ransom pay-
ments and recovery costs scale linearly and sublinearly, re-
spectively, with annual revenue [36]. Throughout this work,
we use real-world data where possible to construct our model.

From the same dataset we find that recovery costs scale
sublinearly, which we model as

Crec
(

d [t]
i,w

)
= arec ·

(
d [t]

i,w

)nrec
(7)

with arec = 230123 and nrec = 0.125 which achieves
R2 = 0.865, indicating a satisfactory fit.

Hence in our model, ransom and recovery costs are scaled
according to agent size and are given by Eqs. 6 and 7. Both
are plotted in Fig. 1.

3.4 Security Posture

A key but nebulous value in real world security is security
“posture”, or the relative strength of an organization’s security
efforts. To estimate this distribution, we rely on a real-world
proxy: the percentage of ransomware attacks that were suc-
cessfully stopped before data was encrypted [36]. Following
this definition, we represent defenders’ security posture as the
probability of preventing ransomware losses in the event of
an attack. Fitting a normal distribution to this dataset yields
mean µp = 0.28 and standard deviation σp = 0.10. Hence at
timestep t = 0, each defender di is initialized with posture
d [0]

i,p where

d [0]
i,p = p, p∼N (µp,σ

2
p), 0≤ p≤ 1 (8)

A posture of d [t]
i,p = 0 indicates that defender di has no secu-

rity whatsoever (meaning any attack at all will be successful)
while d [t]

i,p = 1 indicates that defender di has perfect security
(meaning no amount of attacking will be successful).

3.5 Attacker Profitability
Our model assumes that attackers must spend some amount
of resources (the “wager”) in order to successfully mount
an attack. Before determining appropriate wager sizes (de-
scribed later in §4), we must first establish ransomware agents’

operating expense ratio OER =
Total Expenses
Total Revenue . We estab-

lish parameters for this from two sources: First, we find that
the Conti ransomware group had an estimated revenue of
$104.4M with $31.2M in expenses (OER = 0.30) [42]. From
another source, we find that Conti had an estimated return on
investment (ROI) of +163% which implies OER = 0.38 [43].
From these sources we estimate that our attackers should
make roughly $3 for every $1 they spend and choose
OER = 1

3 .
Using our choice of OER, we can derive a formula for the

“wager” an attacker must forfeit to attempt an attack. First,
note that the expected revenue from an attack on defender di
is a function of di’s wealth and posture:

E [ revenue | di ] =
(

1−E
[
d [t]

i,p

])
·E
[
Crans

(
d [t]

i,w

)]
(9)

Second, we define the expected expenses of an attack to
scale linearly with di’s posture and wealth, and subject to a
scalar factor sc:

E [expenses | di] = sc ·E
[
d [t]

i,p

]
·E
[
Crans

(
d [t]

i,w

)]
(10)

Then

OER =
E [expenses | di]

E [revenue | di]
=

sc ·E
[
d [t]

i,p

]
(

1−E
[
d [t]

i,p

]) =
1
3

(11)

Since E
[
d [0]

i,p

]
= µp = 0.28 it follows that sc = 0.857.

3.6 Security Investment Payoff
To determine the relationship between security investment and
security posture, we build on assumptions from the Gordon-
Loeb model [17]. Namely, we first borrow the assumption
that a defender’s security posture is a monotonic function of
the amount of resources they have invested into security, and
that security investments suffer from diminishing returns and
asymptotically approach (but never reach) perfect security
(i.e. d [t]

i,p = 1). We also add the assumptions that zero security
investment should produce zero security posture and that
the effect of a security investment is relative to the size of
the organization1. Finally, we assume that typical security
spending should produce typical security posture.

1This last point also roughly follows from the Gordon-Loeb model [17]
where investment z is relative to total possible asset loss λ. In our model,
we assume λ to be the total assets of the defender rather than the value
of a particular dataset. Another reason we choose to model investment as
a percentage of wealth (instead of perhaps by modeling specific security
controls) is to limit model complexity.
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Figure 2: In our model, defenders can improve their secu-
rity posture by making investments into security. We borrow
assumptions on security investment from the Gordon-Loeb
model [17], namely, that investments into security monotoni-
cally increase security posture but are subject to diminishing
returns. We add the constraint that average security spending
should produce average security posture. These constraints
are satisfied by the function y = erf(25x).

The above assumptions form a set of constraints. One pos-
sible class of functions that satisfy these constraints are sig-
moidal functions. We choose the Gaussian error function erf
as a candidate sigmoidal function and model it as a function
of current and previous security spending (full details in §3.7).
To satisfy the above final constraint (that average spending
should produce average posture), we must scale the erf in-
put by a scaling parameter sp such that average investment
produces average posture, i.e.

d[t]
i,investment % =

$ amount of investment

d [t]
i,w

(12)

d[t]
i,total investment % = d[t]

i,investment % +d[t−1]
i,investment % (13)

d [t]
i,p = erf

(
sp ·d

[t]
i,total investment %

)
(14)

We find that average security investment in the real world
is about 1% of resources per annum [44, 45]. Recall that we
empirically find average posture to be µp = 0.28. Putting this
all together, we require that

0.28 = erf(sp ·0.01) (15)

which is satisfied when sp = 25, and shown in Fig. 2.

3.7 Security Depreciation
Unfortunately, security posture depreciates without continued
investment. We use a few assumptions to create a reasonable
security depreciation schedule for defenders’ security posture.
First, we note that security investments can be in the form of

capital expenditures (“capex”) or operational expenditures
(“opex”)2.

Second, we find that in most organizations security spend-
ing is dominated by operational expenditures with capital
expenditures only consisting about 33% of security spend-
ing [46]. Hence we define sK = 1/3 to be the percentage of
security spending that retains value in future rounds (capex)
while the other two-thirds retain no value in future rounds
(opex). We also assume that capex decays by some fixed
depreciation scalar λ where 0≤ λ≤ 1. Together,

d[t]
i,opex =

2
3
·d[t]

i,investment % (16)

d[t]
i,capex =

1
3
·d[t]

i,investment % +(1−λ) ·d[t−1]
i,capex (17)

d [t]
i,p = erf

(
sp ·
(

d[t]
i,capex +d[t]

i,opex

))
(18)

To determine the rate of capex decay λ we again rely on
the assumption that average security spending should produce
average security posture. Namely, even with capex decay it
should still be such that a 1% investment of resources pro-
duces an average security posture µp = 0.28 in perpetuity.
By simulation we find that this constraint is satisfied when
λ = 0.4, meaning that the value that capital expenditures pro-
vide towards security posture depreciates by 40% every it-
eration, and that even with this depreciation an organization
investing 1% of resources into security each iteration will
maintain a security posture of µp = 0.28.

3.8 Insurance Policy Parameters
From a dataset of real-world cyberinsurance policies we find
that premiums have a linear relationship with retentions [30].
Hence in our model, insurers will sell a policy Π with pre-
mium ΠP and retention ΠR where ΠR = 25ΠP (R2 = 0.90).
Premium prices themselves are calculated during runtime and
are based on in-model risk (see §4.3.3).

We also include a loss ratio parameter: as part of our model,
insurers operate under a fixed target loss ratio LR, which is
defined as the percentage of collected premiums that are paid
to policyholders in the forms of claims. We take inspiration
from the United States’ Affordable Care Act which mandates
a loss ratio of 80% and hence we choose LR = 0.80.

4 Model Gameplay

Once game initialization is complete, gameplay begins. Our
model is an iterated system that evolves over a series of
round timesteps t = [1,2, . . . ,M]. There are five major steps
that happen in each round:

2A capital expenditure is a purchase that retains its value upon purchase,
such as a hardware firewall device. An operational expenditure is one that is
“consumed” upon purchase, such as paying for services like incident response.



4.1 Security Depreciation
For all rounds t > 0, defenders’ prior capital expenditures
experience decay given by

d[t]
i,capex = d[t−1]

i,capex · (1−λ) (19)

4.2 Threat Analyses
At the start of each round, each player performs a “threat
analysis” to evaluate current risk levels to inform decision-
making later in the round.

4.2.1 Attacker Threat Analysis

Attackers are only incentivized to attack if the expected gains
from attacking a victim exceed the expected loss, which is
partially dependent on the victim’s security posture. However,
attackers do not know victims’ posture prior to attacking and
instead must rely on an expected posture. Hence attackers
compute a method-of-moments estimation of the average
defender posture µ̂p

[t] [47].
Recall from §3.5 our definitions of expected attacker gains

and losses. During gameplay, attackers use their approxima-
tion µ̂p

[t] in lieu of E
[
d [t]

i,p

]
, reducing to the following:

E
[
attacker earnings | d [t]

i

]
=Crans

(
d [t]

i,w

)
·
(

1− µ̂p
[t]
)
(20)

E
[
attacker loss | d [t]

i

]
= sp · µ̂p

[t] ·Crans
(

d [t]
i,w

)
(21)

Then, given a random pairing between attacker a [t]
i and

defender d [t]
i , the attacker will only attempt an attack if

E
[
attacker earnings | d [t]

i,w

]
> E

[
attacker loss | d [t]

i,w

]
(22)

4.2.2 Insurer Threat Analysis

Insurers must determine the expected number of attacks that
a given defender di will face during round t in order to accu-
rately price policies they will sell later in the round. Recall
that each attacker will attack K victims at random each round.
The probability that a given defender di will be attacked by a
given attacker a j during round t is K/|D|[t] and the probabil-
ity of a defender d [t]

i being attacked by any attacker during
round t is

P [attack][t] = 1−
(

1− K
|D|[t]

)|A|[t]
(23)

We make the simplifying assumption that each defender can
be attacked only once per round. We also assume that insurers

are able to accurately determine the number of active attack-
ers |A|[t] as part of their operating expenses. The value of
|A|[t] is considered business intelligence and is not disclosed
to the defenders.

To further improve risk estimates, insurers are also able to
model attackers’ behavior. This first includes re-calculating
the attacker’s estimate of defender’s average posture µ̂p

[t].
From this, insurers are able to determine the attacker’s expec-
tations for attacking, namely Eq. 22.

Second, insurers can also determine the probability that a
given attacker has enough assets to even attempt an attack
on the average defender. To this end, insurers compute a
method-of-moments estimation of the distribution parameters
of attackers’ wealth with mean µ̂A

[t] and standard deviation
σ̂A

[t] [47]. Then given a random pairing between some de-
fender d [t]

i and attacker a [t]
i the probability that the attacker

has enough funds to attack is given by

P
[
attempt|d [t]

i,w

]
= P

[
a [t]

i,w ≥ E
[
attacker loss | d [t]

i,w

]]
(24)

= Φ

(
lnd [t]

i,w − σ̂A
[t]

µ̂A
[t]

)
(25)

where Φ is the CDF of the standard normal distribution.
Using this threat analysis, insurers estimate the probability

of a given defender experiencing a loss during round t:

(26)
P
[
defender loss | d [t]

i

]
=

P [attack][t] · P
[
attempt | d [t]

i,w

]
·
(

1− d [t]
i,p

)
4.2.3 Defender Threat Analysis

Each defender also computes the probability of an attack.
However, defenders do not have access to the same actuarial
information as the insurers and rely on an approximation in-
stead. To construct this approximation, we use two heuristics:
first we assume that defenders know the percentage of fellow
defenders that are looted each round but not necessarily the
baseline number of attacks:̂̂P [loss] =

# defenders ransomed during round (t−1)
|D|[t−1] (27)

Second, we assume that defenders know their own security
posture but not the postures of others, and rely on the as-
sumption that other defenders share their same posture, i.e.
µ̂p = d [t]

i,p . Hence defenders are able to work backward to
derive an estimated baseline rate of attack:

P̂ [attack][t] =
̂̂P [loss]
1−µp

(28)

Using this rudimentary threat analysis, defenders compute
the probability of a loss in the upcoming round as

P̂
[
loss | d [t]

i,p

]
= P̂ [attack][t] ·

(
1−d [t]

i,p

)
(29)



4.3 Defender Strategy Selection
After threat analysis, defenders choose a strategy for the up-
coming round. Each defender di has three options available:
invest in security, buy an insurance policy, or do nothing.

4.3.1 Strategy I: Do Nothing

If a defender chooses to neither invest in security nor buy
insurance, the expected loss is

E
[
loss | d [t]

i

]
= P̂

[
loss | d [t]

i,p

]
·L
(

d [t]
i,w

)
(30)

which follows from Eqs. 5 and 29.

4.3.2 Strategy II: Invest in Security

Each defender may also choose to invest some amount
0 ≤ x ≤ d [t]

i,w into security. From §3 we can write posture as
a function of investment x:

d [t]
i,p (x) = erf

(
sc ·
(

x+d[t−1]
i,capex

)
/d [t]

i,w

)
(31)

The probability of ransom given investment x therefore is

P
[
loss | d [t]

i , x
]
= P̂ [attack][t] ·

(
1−d [t]

i,p (x)
)

(32)

and the expected loss is

(33)E
[
loss | d [t]

i , x
]
= P

[
loss | d [t]

i , x
]
·L
(

d [t]
i,w − x

)
+ x

which is a convex function. Defenders then use Brent
method [48] to find the optimal investment amount x∗ that
minimizes Eq. 33. Hence the expected loss with optimal in-
vestment x∗ is

E
[
loss | d [t]

i , x∗
]
= P

[
loss | d [t]

i , x∗
]
· L
(

d [t]
i,w − x∗

)
+ x∗

(34)

4.3.3 Strategy III: Buy Insurance

The third option is to buy an insurance policy. We allow
each defender to request Q = 10 quotes from the insurers,
chosen at random. As part of requesting a quote, the insurer
conducts an “audit” of the defender to obtain d [t]

i,w and d̂ [t]
i,p ,

an estimate of di ’s posture. We give insurers an estimate of
di ’s posture to model the information asymmetry between
insurers and insurees and the difficulty of measuring security
posture that is inherent to the underwriting process [30]. The
insurer calculates the probability of di experiencing a loss
during the policy given d [t]

i,w and d̂ [t]
i,p :

(35)
P
[
loss | d [t]

i,w , d̂ [t]
i,p

]
=

P [attack][t] · P
[
attempt | d [t]

i,w

]
·
(

1− d̂ [t]
i,p

)

Insurers then write a policy Π with premium ΠP and reten-
tion ΠR that is expected to achieve the target loss ratio LR, i.e.

LR =
E [insurer loss | Π ]

E [insurer gain | Π ]
(36)

=
P
[
loss | d [t]

i,p

](
L
(

d [t]
i,w

)
−ΠR

)
ΠP

(37)

Recall from §3 that ΠR = 25 ·ΠP. Solving for ΠP yields

ΠP =
P
[
loss | d [t]

i,p

]
·L
(

d [t]
i,w

)
LR+25 ·P

[
loss | d [t]

i,p

] (38)

and the policy Π = {ΠP,ΠR} is given as a quote to the de-
fender. Defenders then compute the expected loss given Π:

E [defender loss | Π] = ΠP +ΠR · P̂
[
loss | d [t]

i,p

]
(39)

If the defender chooses to buy insurance, the insurer will
buy a policy from the insurer that offered the lowest premium.

Choosing a strategy—the defender will choose the
strategy that minimizes the expected loss as given by
Eqs. 30, 33, and 39.

4.4 Fight
Once defenders have chosen their strategies for the round, the
attacks begin. Each attacker targets K defenders, chosen at
random.

Once paired with a defender di , an attacker ai will compute
the expected gains and losses to determine whether attempting
an attack on di is financially rational (Eq. 22). If so, and if the
attacker has enough wealth (Eq. 24), ai will spend the amount
given by Eq. 10 and attempt an attack.

With probability d [t]
i,p the defender “wins” the fight (mean-

ing their security posture was sufficient to ward off the attack),
and with probability 1−d [t]

i,p , the attacker wins the fight. If the

attacker wins, the defender di pays the ransom Crans
(

d [t]
i,w

)
to attacker ai . Defender di also loses wealth in the form of

recovery costs Crec
(

d [t]
i,w

)
. If the defender had chosen insur-

ance during Step 3, they are covered for their losses minus
the retention ΠR.

4.5 Iterate Until Convergence
The above steps are iterated until the game reaches one of
three termination conditions: Either all defenders die off
(di,w = 0 ∀di ∈ D), all attackers die off (ai,w = 0 ∀ai ∈ A),
or the game reaches a stable equilibrium. To define this last
condition we consider a game stabilized if there are no attacks
attempted for some number δ = |A|[0]= 50 rounds in a row.
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Figure 3: This figure plots the results of 100 simulations of
the baseline model. In all 100 simulations, the defenders end
gameplay with $0, with much their wealth transferred to the
attackers via ransom payments (the rest having been lost to
recovery costs, insurance premiums, or security investments).
While hardly evident here, insurers are collecting premiums
and paying claims throughout gameplay but their wealth re-
mains largely unchanged.

5 Baseline Model Behavior

Our first study is to establish model behavior in the absence
of any policy intervention, i.e. the model behavior when de-
fenders are free to make utility-maximizing investments in
security and insurance.

Study Configuration: Model inputs are subject to the de-
fault values as found in §3. To capture the range of possible
model behavior, we ran the model 100 times.

Study Results: We highlight four results to summarize the
baseline model: First, we observe that in the baseline model
the attackers completely plunder the defenders (Figure 3).
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Figure 4: Stacked time series showing defenders’ choices
given the model’s default input values. Results are averaged
across 100 runs. Throughout simulation, the dominant strat-
egy is to neither buy insurance nor invest in security. However,
purchasing security becomes a more popular strategy as game-
play progresses (as a percentage of defenders).
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Figure 5: To explicate model behavior, we track the values of
several “barometer” variables throughout model simulation.
This figure shows four such variables averaged across 100
runs of the baseline model. We find that as the simulation
progresses, defenders are ransomed and die off, causing the
probability of any defender getting targeted and attacked in a
given round to approach 1. We also find that average security
posture starts at 0.28 (by construction—see §3) but quickly
drops to near-zero due to a lack of security investments during
the early stages of gameplay (compare with defender choices
in Fig. 4). Later, incentives for defenders change and average
security posture begins to rise but this is still not enough to
prevent a total loss for defenders (compare with Fig. 3).

Second, we observe that defenders sometimes choose to
invest in security and sometimes purchase insurance but in
most cases are choosing to do neither (Figure 4).

Third, we observe interesting gameplay dynamics, as
shown in Figure 5. Specifically, we find that average de-
fender posture starts at µp = 0.28 (which follows from Eq. 8);
however, average posture quickly craters to near-zero due to
the model’s built-in security depreciation schedule (Eq. 18)
and the lack of security investments early during game-
play (Fig. 4). After this initial drop, security investments in-
crease and posture rises until around timestep 3000 where the
game starts to equilibrate. Other gameplay conditions exhibit
interesting dynamics as well: as defenders die off, the prob-
ability of getting targeted by an attacker approaches 1, and
so does the probability of an attacker rationally deciding to
attack (Eq. 22) (although this falls as the game equilibrates).
However, the probability of a defender getting attacked and
the attack succeeding (% ransomed) fluctuates considerably.

Finally, our fourth observation is that a considerable
amount of wealth is lost to recovery costs (Fig. 6). From
Figure 6 we also note that attackers are able to ransom con-
siderable wealth (∼$17T) while only spending a fraction of
this on expenditures (∼$300B) despite our construction of the
wager (Eq. 10). This is explained by the low average security
postures in the first∼1000 rounds of execution (Fig. 5) where
the bulk of ransom is stolen (Fig. 3).
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Figure 6: A Sankey diagram showing the transfer of wealth
between the three classes of agents in the baseline model,
averaged across 100 simulations. The majority of defender
wealth is lost to ransom payments and recovery costs. In
the baseline model, comparatively little is spent on security
investments or insurance.

5.1 Model Validation

How do we know that our model is a reasonable abstraction
of the real world? One method is to confirm that assump-
tions about the state of the world in §3 are reflected during
simulation, or at least at the start of simulation. To this end,
we identify several “canary” variables to confirm that vari-
ous conditions are met at timestep t = 0. For example, we
find that average initial defender posture µ̄p matches the dis-
tribution of known real-world security posture µp = 0.28.
Likewise, the initial probability of attack P [attack][0] = 0.59
matches real-world rate of attacks [36]. Finally, we validate
that defender strategies mimic the real world, with defenders
choosing mixed strategies of buying insurance, investing in
security, and doing neither.

However, we do not claim strict ecological validity of our
model: clearly we do not live in world where defenders are
completely looted of their wealth. Nevertheless, when there
was a design tradeoff between ecological validity and model
simplicity/interpretability, we chose the latter over the former.
For example, see Section 10 where we improve validity, albeit
(in our view) at the expense of model interpretability.

Besides model validation, there is also the concern that our
C++ code is a correct implementation of the model given in
Sections 3 and 4. To this end, we add runtime assertions to
each variable (for example, asserting that variables represent-
ing probabilities are always between 0 and 1); we also add
considerable “bookkeeping” assertions to the code to ensure
that certain constraints are always satisfied (for example, that
Σ initial wealth = Σ end wealth + Σ expenses).

6 Sensitivity Analysis

Given that we do not claim strict ecological validity, the value
of this work lies not in the output values themselves but in
the shapes of the outputs and how the outputs respond to in-
puts. For example, one may wish to understand which inputs
have the greatest effect on outputs. This may be of particu-
lar interest to policymakers, who may have some degree of
control over one or more of the real-world analogs to model
inputs and naturally would be interested in identifying which
of these input values, if adjusted, would provide the greatest
benefit to the system at the least cost. This question can be
addressed by means of our second study, a one-way sensitivity
analysis of our model.

Study Configuration: To perform a sensitivity analysis,
we sweep inputs across a range of plausible inputs to deter-
mine how variations in single inputs affect simulation out-
comes. This requires two preliminary steps:

First, we must define a loss function to track the “goodness”
of the outcome, which we define as the percentage of defender
wealth remaining at timestep t:

loss[t] =
∑
|D|[0]
i=0 d [0]

i,w −∑
|D|[t]
i=0 d [t]

i,w

∑
|D|[0]
i=0 d [0]

i,w

(40)

Second, we must determine a reference timestep t at which
to analyze system loss. While the obvious choice might be to
evaluate loss at simulation termination (defined in §4.5), we
find that perturbations of individual input values are generally
not enough to forestall total defender loss (i.e. loss=100%)
regardless of input value and ultimately obscure how inputs
affect outcomes. Instead, we choose to perform our sensi-
tivity analysis at some point during simulation where input
value perturbations can have a visible affect on loss, which
occurs when defenders wealth has been reduced halfway. In
the baseline model, we see from Fig. 3 that this occurs at
approximately t = 5003.

Study Results: Sensitivity analysis results are given in
Fig. 7. For model inputs that are expressed in terms of a
percentage, we evaluate the model across the entire possible
range of values [0,1] (Fig. 7a). Other model inputs are not
bound by a range, so we evaluate on the range from 0× to 2×
the baseline default values.We highlight three observations:

First, we observe that a number of variables are positively
correlated with system loss but in several different ways. For
example, the coefficient β1,ransom exhibits a near-linear effect
on loss; this follows since β1,ransom is a linear scaling fac-
tor for computing ransom prices). In contrast, we see that
K (the number of attacks an attacker attempts each round)
has a sub-linear effect on loss, likely because the number of

3While not shown here, we perform sensitivity analyses at other timesteps
to confirm that t = 500 is both in line with sensitivity analyses at other
timesteps and also the most illustrative and informative timestep to perform
a sensitivity analysis.
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(a) Sensitivity analysis of model inputs that are expressed in terms of a
percentage. For these inputs, we evaluate the model across the full range
of possible input values (namely from 0 to 1).
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(b) Sensitivity analysis of non-percentage model inputs. For these inputs,
we evaluate from 0× to 2× the default value.

Figure 7: Results from the model input sensitivity analysis, evaluated at timestep t = 500.

available victims saturates as attackers begin to compete for
the same victims. Yet another: The exponent to the recov-
ery cost function nrecovery exhibits a sigmoidal effect on loss.
We also observe that some variables have a slightly negative
correlation with loss. For example, increasing the security
investment scaling factor sp allows defenders to more effi-
ciently translate security investments into elevated security
posture, which ultimately reduces loss.

Second, we observe that several variables exhibit a “flat”
sensitivity response, which prima facie might suggest the vari-
ables have no effect on system output. However, we stress
that this is not necessarily so: our construction of loss is not
the only possible metric of goodness, and other loss construc-
tions (e.g. rate of loss, or loss including insurers’ wealth)
might show a different response. Another possibility is that
the flat variables do not produce a significant effect at our
given choice of timestep t = 500. As proof of such possibil-
ities, consider §9, where we evaluate the effect of insurers
who operate with loss ratio LR = 100%: we observe multiple
effects on gameplay despite what Fig. 7a may suggest.

Third, we can use the sensitivity analysis to help deter-
mine the weighted importance of each variable in the model.
This is particularly useful for purposes of security policy and
regulation, where one may attempt to modify the real-world
system of security by influencing various parameters. For ex-
ample, our sensitivity analysis shows that the exponent to the
recovery cost function nrecovery produces catastrophic losses
if allowed to increase; a regulator might want to investigate
mechanisms for preventing the real-world analog of nrecovery
from increasing. Interesting, the inverse is not true: If a reg-
ulator were to focus on trying to reduce loss by decreasing
certain values, they should focus on decreasing the real-world
analogs of our model variables K and β1,ransom.

Finally, we point out that this is only a one-way sensitivity
analysis involving the perturbation of a single input variable

at a time. Nevertheless, policymakers—who may have influ-
ence over multiple real-world analogs of model inputs—may
be interested in seeing the effects of adjusting two or more
model inputs at a time. We do not include any multiple-way
sensitivity analyses in this work (mostly due to the curse of
dimensionality) but refer those who are interested in such
analyses to use our online demo or open source code.

7 Mandated Security Investments

Amongst policymakers there has been discussion on how to
stop “passing the buck” on cybersecurity by raising the stan-
dard for security [49]. In this study, we add a “policy” to the
model, requiring defenders to invest some minimum percent
of resources towards security to investigate how such a policy
might improve (or hurt) overall outcomes for defenders. By
extending the baseline model of Section 5, one may explore
the effects of such a policy.

Study Configuration: To create this variant of our model,
we first add a new parameter M, which is the percentage of
resources a defender must invest in security at the start of each
round of gameplay. As with voluntary security investments,
the effect that investments have on security posture is given
by Eq. 14. After the mandatory investment, defenders are
still allowed to make a rational decision between insurance,
additional security investment, or doing nothing.

Study Results: We evaluate our model at investment levels
M = {1%,2%,3%,4%,5%}. When M = 1%, we find that
the outcome is still a total loss for the defenders. However, the
wealth is not being transferred to the attackers; instead, we
observe that the bulk of defenders’ wealth is now being spent
on security investments instead (Fig. 8a). Does this mean the
defenders are spending too much on security?

Remarkably, we find the answer to be no. Observe what
happens when we increase M from 1% to 2%: unlike the cases
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Figure 8: Wealth transfers given a mandatory security investment M, averaged across 100 runs. Compare to the baseline case
where M = 0% (Fig. 6). With a 1% mandatory minimum investment, the majority of defender wealth is spent on security
spending (Fig. 8a). However, we also find that when the mandatory minimum investment is raised to 2%, defenders spend less on
security overall and retain more wealth (Fig. 8b). The explanation for this counterintuitive result can be found in Fig. 9.
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(b) Mandatory investment M = 2%

Figure 9: Gameplay barometer values given a mandatory security investment M, averaged across 100 runs. Compare to the
baseline case where M = 0% (Fig. 5). With a 1% mandatory minimum investment, average security posture remains higher than
in the baseline case (never dropping below the initial 0.28), which reduces but does not eliminate the percentage of defenders
that are attacked and ransomed each round. With a 2% mandatory investment, average security posture remains high enough to
ward off all attacks altogether.
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Figure 10: Stacked time series showing defenders’ choices given a mandatory security investment M, averaged across 100 runs.
Compare to the baseline case where M = 0% (see Fig. 4). With a 1% mandatory investment, defenders initially favor insurance
but also still make additional voluntary security investments. With a 2% mandatory investment, defenders find their security
posture to be adequate and do not seek out additional security investments.

where M = 0% or M = 1%, the defenders retain a sizeable
portion of their initial wealth (Fig. 8b). Even more remarkably,
the defenders managed to retain more wealth while investing
less in security!

What causes this? Consider Fig. 9a: at a 1% mandate,
average defender posture climbs to above 0.70 (signifi-
cantly higher than the 0% mandate case in Fig. 5) and the
% ransomed is considerably lower but the incentive to attack
is never eliminated. We find that the attackers are able to prey
on low-value targets (small assets and weak posture) long
enough to stay alive; after ∼ 700 rounds, even the strong-
postured defenders have exhausted their wealth on security
investments and are then killed off.

Now consider Fig. 9b: at a 2% mandate, average defender
posture quickly rises above 0.70. Although not any higher
than the peak in Fig. 9a, the high posture is achieved much
earlier in gameplay (timestep t = 10 instead of t = 600). The
result is that defenders are able to achieve high posture while
retaining high net worth early in simulation, which makes
them very expensive to attack. Attackers—who have not yet
been able to grow their wealth—do not have enough wealth to
attempt attacks, and % attacked and % ransomed quickly drop
to 0. With many rounds of no attacks, the game is considered
to be at equilibrium and ends shortly after 50 rounds.

Another interesting finding is that a 1% resource mandate
does not seem to remove the incentive for additional security
investments; we also see that at M = 1% induces more de-
mand for insurance as well (Fig. 10a). By the time M = 2%,
defenders’ posture is likely high enough to allow them to buy
neither insurance nor additional security.

Finally, we simulated higher values of M but omit the re-
sults here because the trends closely mimic the M = 2% case.
Namely, defenders’ posture quickly reaches µ̄p > 0.70; the
number of attacks per round quickly approaches 0 and the
game quickly settles at an equilibrium; defenders retain a
modest fraction of initial wealth, but begin to spend more and
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Figure 11: Gameplay barometer values given an insurance
mandate. Compared to the baseline model (see Fig. 5), aver-
age defender security posture is lower.

more on security (unnecessarily) and overall loss increases.

Discussion: We highlight two takeaways from this study:
first, we find that losses are minimized when defenders are
required to invest at least 2% of resources into security. We
note that this is roughly double the current real-world standard
practice (as found in §3.6).

Perhaps the most significant finding from this study is that
we find evidence that security is a weakest-link game despite
not including this as a feature of our model4. In other words,
it is an emergent property of our model that the existence of
weak defenders determines the outcomes for strong defend-
ers too. The mechanism by which this is possible is in the
attackers’ emergent strategy to attack weak defenders first
and bootstrap themselves into being able to eventually take
down all defenders.

4In game theory, a weakest-link (or minimum effort) game is cooperative
game wherein the collective outcome for a group is determined by the player
who puts in the least amount of effort towards some shared goal.
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Figure 12: Wealth transfers given an insurance mandate. Com-
pared to the baseline model (see Fig. 6), insurers’ wealth in-
creases by roughly 10%, but for the defenders, the outcome
remains a total loss.

8 Mandated Insurance

Conventional insurance can be beset by the adverse selec-
tion problem, where parties with a high risk of loss are more
likely than low-risk parties to seek insurance, causing risk
pools to contain disproportionately risky policyholders [50].
In the presence of information asymmetry, insurers may not
be able to distinguish high-risk policyholders from low-risk
policyholders and may be forced to raise premiums for all pol-
icyholders in response. This can raise the price of insurance
for all parties (including low-risk policyholders) and distort
the insurance marketplace and lead to market failure. One
potential solution to the adverse selection problem has been
an insurance mandate requiring all parties to be insured [51].

There may be reason to believe that adverse selection be-
sets cyber insurance as well: for example, insurers appear
to have markedly different levels of sophistication when it
comes to estimating insurees’ risk levels [30]; this might
allow for an information asymmetry between insurer and in-
suree and cause adverse selection. In our baseline model, such
adverse selection is possible because defenders and insurers
have different levels of knowledge on defenders’ security
posture (see §4.3.3).

Hence in our next study, we implement an insurance man-
date policy requiring all defenders to obtain insurance. As
with health care, the argument might be that requiring univer-
sal coverage increases the average cyber posture of the risk
pool, allowing for a more functional insurance market.

Study Configuration: At the start of each round, each de-
fender is required to purchase an insurance policy. The de-
fender is able to choose the best quote of Q = 10 insurers,
chosen at random. After purchasing the policy, defenders may
choose to also make security investments.
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Figure 13: Defender choices when the insurance loss ratio
LR = 100%, indicating actuarially fair insurance.
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Figure 14: Cumulative assets under actuarially fair insurance.
Insurers’ wealth decreases by about 10% despite selling more
policies.

Study Results: Somewhat surprisingly, we observe that un-
der the existence of an insurance mandate, game outcomes do
not strongly differ from the baseline model (Figs. 11, 12). The
only notable difference was that insurers ended simulations
with roughly 10% more than when they started (compared to
the baseline model where the insurers actually lost wealth as
a result of underwriting policies).

9 Actuarially Fair Insurance

In the baseline model we observe that there is not a strong in-
centive for defenders to purchase insurance (see Fig. 4). One
explanation might be that premiums are priced too high rela-
tive to what claimants expect to receive in return. To test this
hypothesis, we model and simulate an actuarially fair insur-
ance market where insurers write policies such that expected
gains are equal to expected losses. This may be analogous
to various U.S.-based government-backed insurance schemes
such as the Federal Crop Insurance Corporation (FCIC) or
the National Flood Insurance Program (NFIP) [52, 53].

Study Configuration: We can model actuarially fair insur-
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Figure 15: Cumulative agent wealths for various fixed growth rates. Each subfigure plots 100 simulations.
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Figure 16: Gameplay barometer values when the growth rate
r = 0.01. For all r ≥ 0.01 the system reaches a homeostasis
where posture drops to 0 and % targeted/attacked/ransomed
stabilize at 0.63.

ance in our model by fixing the loss ratio to be LR=100%.
This implies that insurers write policies with the expectation
that the amount they gain from premiums is equal to the
amount they will lose to claims.

Study Results: When LR increases to 100%, the expected
loss given insurance decreases (see Eq. 39) making insur-
ance a more attractive option (Fig. 13). Surprisingly, even
given the increase in premiums collected, the insurers actu-
ally end up with less cumulative wealth than in the default
game scenario (Fig. 14 vs. Fig. 3); This is because there is
no profit buffer to insulate insurers from the consequences of
poor underwriting when collecting defender security posture.
We observe that despite the considerable change in defender
behavior, model outcomes remains nearly unchanged from
the baseline model evaluation.

It is not altogether unexpected that selfless insurers did
not improve outcomes for defenders: increasing the incentive
to purchase insurance does not affect the incentive to invest
in security but instead replaced the incentive to do neither
(Fig. 14 vs. Fig. 3). With defender posture mirroring the
default configuration, there is no change in incentives for the
attackers and no change in outcomes either.

10 A Non-Closed Ecosystem

An obvious limitation of our model so far is that it is a closed
ecosystem where wealth is only transferred and never created.
This is a clear deviation from the real world, where organiza-
tions earn profits and existing wealth experiences compound
growth. In an effort to more accurately model the defender-
attacker-insurer ecosystem, one may wish to add compound
growth to our model.

We hesitate to include such growth into our model for two
reasons: First, our interests thus far have been in measur-
ing model outcomes, which requires a notion of model equi-
librium or homeostasis (see §4); continuous wealth growth
runs counter to this goal. Second, to keep the model as in-
terpretable as possible, we wish to constrain our model to
be a minimum viable representation of the security attack
and investment ecosystem. Our concern is that additional
model inputs—while in some sense making the model more
“accurate”—may instead obfuscate model behavior, particu-
larly defender decision-making. Nevertheless, in our effort
to make our model a useful tool for others, we have included
such a parameter: the growth rate r. This study explores the
effects of compound growth.

Study Configuration: We introduce a new game param-
eter r which is the rate of return on defenders’ assets. At
the start of each round, each defender’s wealth grows by
d [t]

i,w(1+ r).
Study Results: For small values of r, defenders are still

fully looted but with greater wealth transferred to the attack-
ers (Fig. 15a). As r increases, defenders are able to grow at
roughly the same rate that attackers are able to ransom it
away (Fig. 15b). For values of r ≥ 0.01, defenders’ growth
is unburdened by attackers’ ransoms. This is in spite of the
trend for r ≥ 0.01, where posture drops to 0 (Fig. 16).

We find that the model is highly sensitive to the growth rate
and that the growth rate can dominate the system’s behavior.
Out of caution we decline to draw other strong conclusions
from this study, but present it to demonstrate the flexibility of
our model and its implementation.



11 Other Limitations

As noted above in §10, most of our studies were conducted
within a closed ecosystem where wealth was only transferred
and not created (although this limitation is self-imposed). In
§3 we also mention our decision to model all security invest-
ment through a single investment payoff function rather than
modeling specific security controls, which may be seen as a
limitation or as a necessary abstraction. Other such tradeoffs
were made elsewhere in our model as well: First, there is no
interaction or interdependence between defenders or attackers.
This makes our model unable to explicitly examine network
effects between players or model how a security failure by
one organization can compromise security in another organi-
zation5. We also do not model other insurance features like
exclusions, third-party liability, or systemic risk in an effort
to constrain model complexity.

Finally, we point out that much of the empirical work done
in this paper was best-effort, and that all estimations and
regressions may be improved by finding and including addi-
tional data sources.

12 Conclusion

In a world where evaluating security policies ex ante is not
generally possible, our work serves as a blueprint for what
may be the next best option: large-scale simulation of the
security ecosystem using a game theoretic agent-based model.

Using our model, we are able to simulate various policy
“interventions”, first via a sensitivity analysis, and then as
specific interventions like mandatory minimum investments,
mandatory insurance, and actuarially fair insurance. From
these studies we find that even perfect play from defenders
fails to produce a social optimum.

This carries significant implications: security cannot be
solved by expecting defenders to be better at defense. We
find evidence that the lack of security standards creates easy
money for attackers; over time this compounds until even the
well-defended are victimized. Indeed, our model finds that
security is a weakest-link game. This helps make the case for
policy interventions in security, whereby setting minimum
standards can disincentivize attackers and reduce losses. To
make our work accessible to others, we have released it as an
online application and have made the code open source.
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